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ABSTRACT  
In the context of activity recognition, wearable devices are nowadays the preferable 
hardware thanks to their usability, user experience and performances; at the same time, 
these devices present limitations in terms of computational capability and memory, which 
force the algorithm design to be at the same time efficient and simple. In this work, we adopt 
Symbolic Aggregate Approximation (SAX), a symbolic approach for information retrieval in 
time series data that allows dimensionality and numerosity reduction; SAX is employed here, 
in combination with 1-Nearest Neighbor classifier, to identify activity phases in continuous 
repetitive activities from inertial time-series data. The proposed approach is validated on a 
cross-country skiing dataset and on a daily living activities dataset. 
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1. Introduction  

 

Activity Recognition (AR) is a prominent research area with a wide range of 

applications to home automation (Belgioioso, Cenedese, Grillo, Fraccaroli & Susto, 

2014) gaming (Gowing et al., 2014), sport (Cenedese, Susto & Terzi, 2016) and health 

care (Clifton, Clifton, Pimentel, Watkinson & Tarassenko, 2013) to cite a few. In 

particular, the rapid diffusion of IMUs (Inertial-Measurement Units) has allowed, in 

recent years, the development of compact sensor-equipped devices (e.g. 

smartwatches and smartphones), which lead efficient monitoring of human activities to 

be feasible and to have a strong impact on the quality of life (Clifton et al., 2013); on 
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the other hand, wearable devices present some limitations in terms of computational 

capability and memory, which force the algorithm design to be, at the same time, 

efficient and simple (Cenedese, Susto, Belgioioso, Cirillo & Fraccaroli, 2015). In such 

systems, IMU-generated data may be obtained for example from accelerometers, 

gyroscopes and magnetometers. 

In this context, the AR problem is strictly connected to Gesture Recognition (GR); in 

fact, activities may be seen as compositions of gestures that are executed in a 

continuous time window (Tran & Trivedi, 2012). Due to the vastness of application 

scenarios, it may be helpful to categorize AR problems into three main types: 

¥ continuous-repetitive - activities that are continuous and composed by repeated 

gestures with a periodic behavior within the same activity type; 

¥ continuous-spot - continuous activities with non-repetitive gestures;  

¥ isolated - activities composed by isolated gestures. 

This work is focused on the continuous-repetitive type (Morris, Saponas, Guillory & 

Klener, 2014), which is typical of sports (rowing and swimming for example) and health 

monitoring applications. 

AR problems are usually tackled by Machine Learning (ML) approaches (Morris et 

al., 2014; Tran & Trivedi, 2012) and they are considered as classification problems: the 

activity or gesture in exam ! !  has to be associated with one of the a-priori defined !  

possible classes of activities/gestures !    !    {! ! ! ! ! !
! . The main challenge in applying ML 

tools in AR problems is to translate the informative content contained in the IMU-

generated time series into a static format that can be handled by ML classifiers (Ravi, 

Dandekar, Mysore & Littman, 2005); the aforementioned procedure is called Feature 

Extraction, a phase that may be time consuming and may lead to information loss 

(Susto, Schirru, Pampuri & Mcloone, 2016). 

In this work, we employ Symbolic Aggregate approXimation (SAX) (Lin, Keogh, 

Lonardi  & Chiu, 2003), a technique to efficiently map time-series into strings; SAX, 

used in combination with a simple classifier, like 1-Nearest Neighbor (Friedman et al. 

2009), allows to directly deal with time-series inputs (without a Feature Extraction 

phase) and to have a parsimonious solution in terms of complexity.  

The rest of the paper is organized as follows: in Section 2, the SAX-based AR 

solution will be presented; results are validated in Section 3 on a normal day activity 

dataset and on a Cross-Country Skiing dataset. Final remarks will be provided in 

Section 4. 
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2. AR Algorithm and SAX  

 

The main phases of the proposed algorithm are listed below: 

1. Gesture Identification - identification and isolation of a single gesture. There 

exist various approaches to deal with this task (Belgioioso et al., 2014); in this 

work, we focus on the following phases, assuming that a Gesture Identification 

routine is providing the activities separated in single gestures.  

2. Symbolic representation - gesture is mapped to a string representation 

through SAX technique.  

3. Gesture classification - the algorithm classifies the gesture exploiting the 

features extracted through the SAX procedure.  

4. Activity classification - following a sliding window of length !!" , the 

classification of the activity in each segment is done by majority vote starting 

from the classified gestures within that window.  

Phases 2, 3 and 4 are described in more details in the following.  

 

2.1 Symbolic Representation  

In this phase, IMU-generated data are mapped into a symbolic domain using SAX to 

yield dimensionality and numerosity reduction (Lin et al., 2003), fundamental features 

for wearable AR solutions. 

SAX has been used in several fields of application, such as classification and 

clustering problems applied on telemedicine time series (Androulakis, 2005), 

entomological problems (Kasetty, Stafford, Walker, Wang & Keogh, 2008), mechanical 

systems (Harris, 2013) and anomaly detection (Carbone, 2014). 

SAX representation also allows distance measures to be defined on the symbolic 

domain. Specifically, SAX allows a time series of arbitrary length !  to be reduced to a 

string of arbitrary length ! , with !! ! !! , and typically ! ! ! ; the ratio of !  to !  is 

known as compression rate. The string of length !  is composed by !  characters from 

the alphabet set, whose size is also an arbitrary integer !, where ! ! ! . 

The discretization procedure is unique: in order to transform the raw time series into 

the symbolic strings we need an intermediate representation; first, the data is 

transformed into the Piecewise Aggregate Approximation (PAA) representation and 

then the PAA representation is symbolized into a discrete string; the procedure will be 

detailed in the following Sections. There are two important advantages to doing this 

(Lin et al., 2003): 
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¥ Dimensionality Reduction : the dimensionality reduction power of PAA is the 

well-defined and well-documented (Tran & Trivedi, 2012; Yi & Faloutsos, 2000); 

¥ Lower Bounding : proving that a distance measure between two symbolic 

strings is a lower bound for the true distance between the original time series. 

The key observation that allows to prove lower bounds is to concentrate on 

proving that the symbolic distance measure bounded from below the PAA 

distance measure. 

In order to simplify the reading, Table 1 summarizes the major notation used in this 

section. 

 

Notation  Meaning  

!  Time-series length 

! ! ! ! ! ! ! ! ! ! !  Time-series  

!  Number of PAA segments representing 

!  

! ! ! ! ! ! ! ! , ! !  PAA of the time-series!!  

!  Alphabet cardinality (size) 

! ! ! ! ! ! ! ! !  Symbolic representation of !  

 

Table 1. Meaning of the main notation used in this section. 

 

2.1.1 PAA Dimensionality Reduction  

The concept behind the PAA is that a time series !  of length !  can be represented in 

a ! -dimensional space by a vector ! ! ! ! ! ! ! ! ! ! ! . 

In order to do this, the original data (time-series and subsequences) is first normalized 

to have zero mean and unit standard deviation, then is divided into !  equal by sized 

frames and the mean value of the data ! ! falling within the i-th frame is calculated. A 

visual example of PAA signal's approximation is illustrated in Figure 1. 
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Figure 1. An example of PAA approximation of a signal. !  is the original signal 
while !  is its PAA approximation. In this example ! ! !"  and ! ! ! !"" !!" . 

 

 

2.1.2 Discretization  

To obtain a discrete representation, a further transformation must be applied to the 

PAA signal. It is desirable to have a discretization technique that will produce symbols 

with equiprobability. This is easily achieved if we supposed that the time series in 

exam have a Gaussian distribution; in (Lin et al., 2003) it is demonstrated that the 

aforementioned assumption is reasonable. Hence, given an alphabet cardinality ! , the 

breakpoints for the discretization can be simply determined by finding the ! ! !  points 

that will produce !  equal-sized areas under the Gaussian curve. 

  Formally, the breakpoints are a sorted list of numbers ! ! ! ! ! ! ! ! ! ! ! !  such that the 

area under the Gaussian curve from ! !  to ! ! ! ! is equal to ! ! ! . Obviously, ! ! and ! !  

are defined as −!  and +!  respectively. 

In summary, a time-series can be discretized in the following manner. First, time-

series is normalized, then a PAA is obtained from the original time series and then all 

PAA coefficients that are below the smallest breakpoint are mapped to the symbol a, 

all coefficients greater than or equal to the smallest breakpoint and less than the 

second smallest breakpoint are mapped to the symbol b etc. The concatenation of 

these subsequent symbols that represent the signal is called word. In Figure 2 an 

explanatory example of the discretization step is provided. 
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Figure 2. In the example, with ! ! ! !!" , ! ! ! !!  and ! ! ! !!, the time series is discretized by 
obtaining a PAA approximation and then using predetermined breakpoints !  is mapped map 
into SAX symbols; the time series is mapped into the word BDDC.  

 

2.1.3 Distance Measure  

After introducing the SAX representation, a new distance measure can be defined on 

it. The most common distance measure for time series is the Euclidean distance, but is 

not the only one. For the subsequent considerations, let ! ! ! ! ! ! ! ! !!!  and !  be two 

time-series of the same length ! and let  !  and   !  be their SAX symbolic 

representations. The SAX distance is defined as: 

 

¥ Euclidean Distance : 

! ! !! ! ! ! − ! !
!

!

! ! !
! ! ! !  

 

¥ PAA Distance : 

! !"" !! ! !
!
!

! ! !− !!
!

!

! ! !

! ! ! !  

 

¥ SAX Distance : 

!!"# ! ! ! !
!
!

! ! ! ! ! !
!

!

! ! !

#(3!  

 

Equation (3) represents a proved lower bounding approximation of the Euclidean 

distance between the original subsequences !  and ! .  
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In practice, the   ! (!,!!  function can be implemented by using a lookup table and can 

defined by the following expression:  

 

! ! ! ! ! ! !
! , !! ! ! !! ! ! ! !

! !"# ! ! !!! ! ! ! ! !"# ! ! !! !
!!!" ℎ!"#$%! !! ! ! !  

  

where ! !  are the breakpoints of the symbol ! . 

 The distance between two SAX representations of a time series requires looking up 

the distances between each pair of symbols, squaring and summing them, taking the 

square root and finally multiplying by the square root of the compression rate.  

In conclusion, it can be noticed that there is a clear tradeoff between the parameter !  

controlling the number of approximating elements, and the value !  controlling the 

granularity of each approximating element. The SAX technique is highly data 

dependent thus it's difficult to determine a tradeoff analytically, but it must be found 

empirically. 

 

2.2 Gesture Classification  

The classification phase is an on-line procedure aiming to assign one of the !  

possible classes (gestures/activity types available for the problem at hand) to the 

observation in exam. One of the most employed approaches to deal with classification 

is k-Nearest Neighbours (k-NN) (Friedman et al., 2009): with k-NN a new observation is 

classified as the class most represented within the group of !  ÕclosestÕ tagged 

observations available in an historical dataset. It is clear how this approach strongly 

relies on the availability of a metric distance, which is of no trivial to be defined when 

dealing with time series data of, possibly, different lengths.  

In this work, the distance defined in (3) is employed by a 1-NN classifier, being 1 a 

typical choice for the size of the neighborhood !  when dealing with complex, time 

series-related input data (P!kalska , Duin & Paclik, 2006). The k-NN classifiers are lazy 

learning approaches (Friedman et al., 2009), where all the computational cost is done 

on-line with the search for the !  closest tagged observations in the historical dataset: in 

order to make the algorithm affordable in the wearable framework, templates are 

defined. Templates are strings that act as unique representative of the problem classes 

! ! ! ! !! !!!
! : the 1-NN classifier will make comparison only with the templates by 

computing at most !  distances. In our approaches ! !  is chosen as the most 



 
A. Cenedese, L. Minetto, G.A. Susto, M. Terzi 

 106 

represented word within the i-th class but other solutions could also be employed. In 

the following, we discuss the choice of parameters !  and ! . 

 

2.2.1 Setting the word length  

The word length !  is closely connected to the signal PAA. In fact, the choice of !  

depends on the dynamics we want to capture: if a signal presents high dynamics and 

gestures in different classes have similar shapes, !  should have a small value. On the 

other hand, in order to maximize the compression rate ! should be as high as 

possible. Thus, we select !  in such a way to trade-off between the two exposed 

objectives. 

When working on gestures, it is necessary to consider the period information. For this 

reason, even if the word length is fixed, the number of samples considered in each 

PAA frame can vary with the signal period. This is not a problem in the proposed 

framework because we are only interested on shape information. So, the length of 

each PAA frame is proportional to the gesture period, but usually differs from one 

gesture to another. For this reason, we calculate the number of samples in each PAA 

frame as ! ! !  rounded down to the nearest integer. In most cases !  is not divisible by 

!  and then the rest of this fraction indicate the number of samples not considered in 

the PAA approximation. To avoid information loss, we use the period information as 

follow: 

1. We calculate the PAA frame length ! as 
!

!
  rounded down to the nearest integer. 

2. We calculate the rest of 
!

!
, !, that is an integer between !  and ! ! !! . 

3. We calculate how many other PAA frames could be created with the !  excess 

samples as 
!

!
 rounded down to the nearest integer.  

4. We calculate the rest of 
!

!
, that is an integer between 0 and ! ! ! . The last rest 

represents the real number of samples neglected that, at worst, is still 

significantly less than ! ! !! . In fact, with this method itÕs obvious that by 

increasing !  then the final number of excess samples tends to ! . In this way, all 

gesture signals could be approximated with a PAA signal formed by ! ! !
!

!
 

frames of equal size.  

In this manner, however, the number of frames varies from a gesture to another and 

depends on the period, leading some gestures to have word lengths longer than ! . We 

overcome this problem by selecting the central substring of fixed length ! !: even if for 

some gesture of length !  is non-divisible by ! , and so the word is longer than ! , we 
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can simply extract the !!  central characters. This procedure has the by-product of 

removing noise which is present at the borders of a gesture. In Figure 3. In the 

example ! ! !" ! ! ! ! !"! ! ! ! ! . A DP (see next section) gesture with ! ! !   !"#  that 

is approximated with !"  PAA frames. The word 

"bacbbabcdegggggfdccdeffgggfedcbbaaaaa" is the SAX string that represents the 

signal in Figure; from this the !!  central characters are extracted. These are the 

characters that correspond to the lighten portion of the signal. an example of the 

selection of the central substring is given. 

 

Figure 3. In the example ! ! !" ! ! ! ! !" ,!   ! ! . A DP (see next section) gesture with 
! ! !   !"#  that is approximated with !"  PAA frames. The word 
"bacbbabcdegggggfdccdeffgggfedcbbaaaaa" is the SAX string that represents the signal in 
Figure; from this the ! ! central characters are extracted. These are the characters that 
correspond to the lighten portion of the signal. 

 

 

2.2.1 Setting the Alphabet Size 

The alphabet size ! entails the discretization on the amplitude domain. If a high 

resolution is required, alphabet size !  should be chosen high enough. In literature, it 

has been heuristically proven that the most effective values are 3-4 (Keogh, Lin & Fu, 

2005). 

 

2.3 Activity Classification   

 Activities can be seen as composition of gestures. Thus, in order to consider a group -

of subsequent gestures, we use a sliding window approach that allows to evaluate the 

sequence of the gestures related to the training session simulation and already 

classified. To do so, we consider a sliding window of fixed size !!"  that includes !!"  

subsequent gestures at a time. Calculating the mode between the classes of these !!"  
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gestures, we find the activity that represents the window in exam; we memorize that 

the subject has performed this activity for the period of the central gesture of the 

window. After that, we shift the sliding window of one position, considering other !!"  

gestures and so on. In Figure 4 we illustrate an example of three sliding window shift, 

considering !!" = 3. 

 

Figure 4. Examples of sliding window in three subsequent shift on the gestures sequence; ! !"  = 
3. Notice that the arrowed lines point to the central gesture of each window. 

 

 

3. Experimental Results  

 

The presented work has been tested on two datasets: 

¥ HAR dataset - a reduced version of the UCI Human Activity Recognition 

(HAR) Using smart-phones Dataset (Anguita, Ghio, Oneto, Perez & Ortiz, 

2013; Reyes-Ortiz, Oneto, Samˆ, Parra & Anguita, 2016) where three 

continuous-repetitive normal day activities have been examined. The dataset 

represents a three classes AR problem, where the activities are walking 

(WLK), walking upstairs (WUS) and walking downstairs (WDS); the dataset 

includes experiments that were carried out by 30 people where all the 

participants were wearing a smartphone, Samsung Galaxy S II, on the waist 

during the experiment execution. 3-axial linear acceleration and 3-axial 

angular velocity have been captured at a constant rate of 50Hz using the 

embedded accelerometer and gyroscope of the device.  

¥ Cross-Country Skiing dataset - a dataset of Cross-Country Skiing where 3 

different styles were performed by 8 skiers; the three styles are  

1. double poling (DP), where both poles are used in parallel by the skier; 

2. diagonal stride (DS), where the poles are used in succession; 

3. kick-double-pole (KDP), a variant of DP, where an asymmetrical kick is 

performed by the skier. 

Analyzed athletes had different skill levels, from recreational (R) to achiever 

(A). Athletes were wearing a smart-watch placed on the wrist; 3-axial linear 
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acceleration, 3-axial angular velocity, 3-axial magnetic field, have been 

captured at a constant rate of 100Hz using the embedded accelerometer, 

gyroscope and magnetometer of the device.  

 

In order to use the aforementioned described approach only one IMU-generated data 

stream has to be considered, which represents an advantage in terms of time 

complexity and power consumption (fundamental in resource-constrained devices); 

hence, we focus on acceleration signals, which best capture signal variability. 

In the following, we discuss the results obtained with the HAR dataset and the Cross-

Country Skiing dataset, respectively. 

 

3.1. Experimental Results: HAR dataset  

The time series in Figure 5 is an example of a WDS gesture; after testing the 

classification performances on a training dataset, the z-axis has been chosen. The 

sampling rate is 50 Hz and the minimum period for a gesture is almost 1 s, therefore, it 

doesnÕt seem reasonable to choose a value of ! ! > !!" . Furthermore, the signal 

doesnÕt appear highly affected by noise and so we can set ! ! ! ! !!" . The results 

showed in the following are obtained with ! ! !! ! 

 

Figure 5. HAR Dataset - Example of a typical WDS Gesture. The informative content of the 
Gesture seems to be subdivided between the three axes. 

 

The classification accuracy on the GR problem is reported on the left panel of Figure 

6, where the classification accuracy is reported as a mean value in a 3-fold cross-

validation procedure (Friedman et al., 2009) separately for each person. It has 

emerged how WUS and WDS classes are quite similar when monitoring the 
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acceleration on the z-axis; for this reason, a second experiment has been performed 

where WUS and WDS are considered as a single class: the classification accuracy is 

reported in the right panel of Figure 6 and shows the benefit introduced by this solution.  

 

 
Figure 6. Classification accuracy on a test dataset with !  = 20, !  = 7: on the left panel WUS 
and WDS are considered as separated classes (Case 1), while on the right one they are 
considered as a single class (Case 2). 
 

Finally, in Table 2, results for 3 persons in terms of the AR problem are reported in 

terms of activity time (AT): namely, how much time of the total AT has been correctly 

classified; also in this case, results are reported for both experiments (the one where 

WUS and WDS are considered as separated classes and the one where they are as a 

single class). Results are reported for different values of the window length !!" , proving 

how longer windows lead to a better algorithm performance.  

 

  Case 1 Case 2 
Person !!"  Correctly Recognized AT (%) Correctly Recognized AT (%) 

 3 3Õ 30Ó / 4Õ 48Ó (72%) 4Õ 07Ó / 4Õ 48Ó (86%) 
1 5 3Õ 42Ó / 4Õ 48Ó (77%) 4Õ 15Ó / 4Õ 48Ó (89%) 
 7 3Õ 49Ó / 4Õ 48Ó (80%) 4Õ 26Ó / 4Õ 48Ó (92%) 
 3 3Õ 05Ó / 3Õ 42Ó (81%) 3Õ 14Ó / 3Õ 42Ó (87%) 

2 5 3Õ 06Ó / 3Õ 42Ó (84%) 3Õ 14Ó / 3Õ 42Ó (87%) 
 7 3Õ 09Ó / 3Õ 42Ó (85%) 3Õ 15Ó / 3Õ 42Ó (88%) 
 3 3Õ 18Ó / 3Õ 40Ó (90%) 3Õ 22Ó / 3Õ 40Ó (92%) 

3 5 3Õ 28Ó / 3Õ 40Ó (95%) 3Õ 29Ó / 3Õ 40Ó (95%) 
 7 3Õ 29Ó / 3Õ 40Ó (95%) 3Õ 29Ó / 3Õ 40Ó (95%) 

 

Table 2. AR performances for HAR dataset reported in terms of AT for different values of ! !" . 

  

3.2. Experimental Results: Cross -Country Skiing  

In this dataset, we consider only the x-axis acceleration data because it is the most 

informative signal in the dataset in exam. In fact, axes y and z data streams represent 

a signal with a high noise level. For this reason, we chose not to considerate 

acceleration along y and z. In Figure 7 an example of DP gesture is shown where it is 

apparent the higher informative content in the x-axis w.r.t. other acceleration signals. 
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Figure 7. Cross-Country Dataset - Example of typical DP gesture. The most informative content 
of the Gesture seems to be contained in the x-axis. 

 

In this application, we consider as fundamental that the PAA signal evolution follows 

at the best the original signal evolution, therefore we chose a length word ! = 30 and 

! ! ! : the chosen value of !  is high enough to guarantee good adherence with the 

original signal, but with a reasonable dimensionality reduction effect. 

As explained, the styles DP and KDP differs for the presence of a kick performed by 

the skier, a movement that is supposedly difficult to be observed from the device 

position (wrist); this hypothesis has been verified experimentally by considering two 

classification configurations: DP and KDP are considered, respectively, as different 

gestures (Case 1) and as the same gestures (Case 2). Results, in term of accuracy, of 

these gesture classification experiments are reported in Figure 8 and Figure 9. 

 

 

Figure 8. Cross-Country Dataset Ð (Case 1). In this experiment: ! = !" , !! ! !" ! and ! = ! . 
Percentage of Classification accuracy for the seven Athletes. 
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Figure 9. Cross-Country Dataset Ð (Case 2). In this experiment: ! ! !" , ! ! ! !" ! and ! ! !. 
Percentage of Classification accuracy for the seven Athletes are here reported. In the Case 2 
formulation of the AR problem, the cardinality of the classification problem is 2; however, the 
classification accuracy reported here for class (DP/KDP) is divided into the 2 original styles to 
provide more insights on the classification capabilities. 

 
After gesture classification, we test performance for the activity classification problem 

in terms of AT.  

We tested this approach with different sliding window size: !!" ! ! , !!" ! !  and ! !!  

on two athletes (4 and 7). Values of !!" greater than 11 seem too elevated because we 

consider reasonable that after 11 gestures of one technique, an athlete change 

activity. In Table 3, for each Athlete, we summarized three experiments executed 

considering the gesture classification with the two configurations: three classes DP, 

KDP and DS (Case 1) and two classes DP/KDP (we consider DP and KDP as the 

same gesture) and DS (Case 2). It can be noticed that the Activity recognition works 

better increasing !!" . In case 1, for Athlete 4 the activity recognition works better than 

Athlete 7; it means that in order to obtain great results of activity recognition, we need 

a classification accuracy > 50% in each class. For case 2, it can be noticed that the 

total activity time is recognized for !!" ! 7 for both the Athlete; in this case in fact, the 

classification accuracy is > 50% in each class. 

 

  Case 1 Case 2 
Athlete !!"  Correctly Recognized AT (%) Correctly Recognized AT (%) 

 3 10Õ 41Ó / 11Õ 41Ó (91.4) 11Õ 33Ó /11Õ 41Ó (98.8) 
4 7 11Õ 15Ó / 11Õ 41Ó (96.2) 11Õ 41Ó /11Õ 41Ó (100) 
 11 11Õ 19" / 11Õ 41" (97.5) 11Õ 41Ó /11Õ 41Ó (100) 
 3 6Õ 42" / 11Õ 36" (57.7) 11Õ 29Ó /11Õ 36" (99) 

7 7 6Õ 59" / 11Õ 36" (60.2) 11Õ 36Ó /11Õ 36" (100) 
 11 7Õ 06" / 11Õ 36" (61.1) 11Õ 36Ó /11Õ 36" (100) 

 

Table 3. AR performances for Skiing dataset reported in terms of AT for different values of ! !" . 
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4. Conclusions and Future Works  

 

In this work a symbolic-based solution for AR problem applied to resourced-

constrained devices is proposed. The approach is based on SAX, a symbolic 

representation used in several fields of application that allows dimensionality reduction. 

The work has been tested on datasets related to continuous-repetitive activities; on the 

tested datasets, the proposed approach achieved good classification accuracy, 

however it has been shown how similar movements (the pair WUS-WDS and the pair 

DP-KDP) are difficult to be recognized. In order to improve the algorithm performance a 

follow-up of this work could be the creation of a metrics that allows to measure the SAX 

distance considering more than one IMU-generated time series or a classification 

approach that takes into account multiple SAX distances computed on different IMU-

generated time series. 
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